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Abstract
Despite evidence of the air pollution effects on cognitive function, little is known about the acute
impact of indoor air pollution on cognitive function among the working-age population. We
aimed to understand whether cognitive function was associated with real-time indoor
concentrations of particulate matter (PM2.5) and carbon dioxide (CO2). We conducted a
prospective observational longitudinal study among 302 office workers in urban commercial
buildings located in six countries (China, India, Mexico, Thailand, the United States of America,
and the United Kingdom). For 12 months, assessed cognitive function using the Stroop color-word
test and addition–subtraction test (ADD) via a mobile research app. We found that higher PM2.5

and lower ventilation rates, as assessed by CO2 concentration, were associated with slower response
times and reduced accuracy (fewer correct responses per minute) on the Stroop and ADD for eight
out ten test metrics. Each interquartile (IQR) increase in PM2.5 (IQR= 8.8 µg m−3) was associated
with a 0.82% (95% CI: 0.42, 1.21) increase in Stroop response time, a 6.18% (95% CI: 2.08, 10.3)
increase in Stroop interference time, a 0.7% (95% CI:−1.38,−0.01) decrease in Stroop
throughput, and a 1.51% (95% CI:−2.65,−0.37) decrease in ADD throughput. For CO2, an IQR
increase (IQR= 315 ppm) was associated with a 0.85% (95% CI: 0.32, 1.39) increase in Stroop
response time, a 7.88% (95% CI: 2.08, 13.86) increase in Stroop interference time, a 1.32% (95%
CI:−2.3,−0.38) decrease in Stroop throughput, and a 1.13% (95% CI: 0.18, 2.11) increase in
ADD response time. A sensitivity analysis showed significant association between PM2.5 in four out
of five cognitive test performance metrics only at levels above 12 µg m−3. Enhanced filtration and
higher ventilation rates that exceed current minimum targets are essential public health strategies
that may improve employee productivity.

1. Introduction

A growing body of evidence is showing associations
between air pollution and impaired cognitive func-
tion. Outdoors, evidence is starting to emerge that
chronic exposure to fine particulate matter (PM2.5)

may also impact cognitive performance through
impacts to the central nervous system (CNS) (Block
and Calderón-Garcidueñas 2009). Ambient air pol-
lution can penetrate indoors, where most expos-
ures can occur due to the high percentage of time
spent indoors. The extent to which ambient pollution
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penetrates and accumulates indoors is influenced
by ventilation, infiltration, and filtration (Ben-David
andWaring 2016). Consequently, building design and
operations can affect indoor exposures to CO2 and
PM2.5, impacting building occupants’ cognition.

Researchers have recently identified associations
between exposure to PM2.5 and various effects
on the CNS and neurodegeneration (Block and
Calderón-Garcidueñas 2009). A hypothesized mech-
anistic pathway is that inhalation of PM2.5 may lead to
a level of chronic, systemic inflammation that impacts
the CNS. This hypothesis is supported by animal
studies that have detected inflammatory biomarkers
in the brain after exposure to PM2.5 and ultrafine
PM, as they may be capable of crossing the blood–
brain barrier (Campbell et al 2005). Epidemiological
studies among older adults have found that chronic
exposure to outdoor PM2.5 is associated with a higher
prevalence of neurocognitive development outcomes
(Freire et al 2010) and neurodegenerative diseases
in adults (Jayaraj et al 2017), the decline of cognit-
ive function among older adults (Power et al 2011,
Weuve 2012). More recently a short-term association
of PM2.5 and cognitive function among older men in
the Normative Aging Study was reported (Gao et al
2021). Effects of PM2.5 on neurocognitive perform-
ance have also been found in younger populations,
including fetuses (Guxens et al 2014), school-age chil-
dren (Saenen et al 2016), and adolescents (Kicinski
et al 2015).

Inside buildings, other pollutants beyond PM2.5

are often found in higher concentrations than out-
doors due to the limited dilution capacity of enclosed
spaces. Controlled environmental exposure studies
among office workers have found independent and
monotonic effects of same-day CO2 concentrations,
as well as effects of CO2 as a subrogate of ventila-
tion rates, on several domains of cognitive function
(Satish et al 2012, Allen et al 2016). The mechan-
ism explaining the effects of CO2 as an independ-
ent pollutant or as a proxy for ventilation rates on
cognitive function at relatively low concentrations
(<3000 ppm) is still not fully understood. It is hypo-
thesized that elevated CO2 in the bloodstream result-
ing from ambient exposure (Vehvilainen et al 2016)
results in sympathetic activation of the autonomic
nervous system (MacNaughton et al 2016). Activation
of the sympathetic nervous system influences cog-
nitive performance, including strategy and working
memory (Starcke and Brand 2012).

Despite the growing evidence of the effects of air
pollution on cognitive function, most studies have
focused on chronic exposures, exposures during early
life or among seniors, and outdoor exposures rather
than indoor exposures, where people spend 90% of
their time (Klepeis et al 2001). There is scarce inform-
ation about the acute effects of indoor air pollution on
cognitive function among theworking populations or

whether the effects are observed even at low expos-
ure levels. These questions are especially relevant for
the working-age population since even small effects
in cognitive function could translate into substan-
tial short- and long-term economic and productiv-
ity losses. To investigate whether cognitive function
was associated with real-time indoor concentrations
of PM2.5 and CO2, we measured the cognitive per-
formance and indoor air quality among office work-
ers in six countries during a 12 month prospective
longitudinal cohort study.

2. Methods

2.1. Study design
This investigationwas part of the Global CogFx study,
a prospective observational longitudinal study con-
ducted between May 2018 and March 2020 among
office workers from a convenience sample of urban
commercial buildings located in six countries (China,
India, Mexico, Thailand, the United States of Amer-
ica [USA], and the United Kingdom [UK]). For
12 months, we collected indoor environmental data
using low-cost real-time monitors in the office build-
ings. We administered ecologic momentary assess-
ments of cognitive function, health, and satisfaction
with the indoor environment via a custom-developed
mobile research app for this study (ForHealth App,
AppLab, Boston, MA, USA). We invited participants
to complete a total of 15 min of study activities
(i.e. cognitive tests and surveys) per week in the app
during regular work hours (Monday thru Friday,
9 am–5 pm local time). The app used the phone’s GPS
location to verify their presence in their office build-
ing when completing a study activity. Study activit-
ies were prompted based on a prescheduled time or
a priori set of target values for the environmental vari-
ables of interest. Once prompted, participants had
one hour to complete the study activity; otherwise,
the activity would be reprogrammed for another day
at the same time or whenever the predefined environ-
mental target was met again.

Study surveys and cognitive tests were tallied as
points in the app to incentivize participation, and
participants received periodic compensation upon
reaching certain thresholds. Participants also received
a wearable device to track physical activity (Fitbit
Charge 2, San Francisco, CA, USA); however, that
data was not relevant for this investigation.

2.2. Study population
Companies with office buildings were eligible to par-
ticipate in the Global CogFx study if they had ten
or more employees and agreed to install a network
of indoor environmental sensors. These companies
either owned or leased a portion of the building or in
some cases the entire building. Companies in know-
ledge work fields, such as architecture, technology,
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Table 1. Building and participant characteristics by country.

Variable
All
countries China India Mexico Thailand UK USA

Personal demographics

Participants 302 34 68 8 10 49 133
Age n (%)
18–29 110 (36.4) 16 (47.1) 29 (42.6) 3 (37.5) 4 (40) 23 (46.9) 35 (26.3)
30–39 125 (41.4) 16 (47.1) 29 (42.6) 4 (50) 6 (60) 14 (28.6) 56 (42.1)
40–49 43 (14.2) 2 (5.9) 7 (10.3) 1 (12.5) 0 (0) 11 (22.4) 22 (16.5)
50–59 22 (7.3) 0 (0) 3 (0) 0 (0) 0 (0) 1 (0) 18 (0)
60+ 2 (0.7) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2 (0)

Job category n
(%)
Managerial 62 (20.5) 5 (14.8) 22 (32.4) 2 (25) — 8 (16.3) 26 (19.4)
Professional 162 (53.6) 9 (26.5) 6 (38.2) 6 (75) 5 (50) 28 (57.1) 91 (68.7)
Technical 48 (15.9) 9 (26.5) 14 (20.6) — 3 (33.3) 10 (20.4) 7 (5.2)
Secretarial or
clerical

22 (7.3) 10 (29.4) 4 (5.9) — 2 (16.7) 1 (2) 7 (5.2)

Other 8 (2.6) 1 (3) 2 (3) — — 2 (4.1) 2 (1.5)
Educational
level n (%)
Incomplete
college

14 (4.7) 4 (11.8) 4 (5.9) — — 4 (8.1) 2 (1.5)

2 year degree 9 (3) 1 (3) 3 (4.4) — — 2 (4.1) 3 (2.2)
4 year
degree or
professional
degree

149 (49.2) 14 (41.2) 30 (44.1) 8 (100) 10 (100) 19 (38.7) 72 (54.4)

Graduate
degree

130 (43.1) 15 (44.2) 31 (45).6 — — 24 (48.9) 56 (41.8)

Buildings characteristics

n 42 8 10 1 1 6 16
Cities
(# buildings)

30 Chengdu (3),
Shanghai (3),
Zhuhai (2)

Bengaluru (5),
Chennai (1),
Gurugram (1),
Hyderabad (1),
Mumbai (1),
Pune (1)

Culiacan
(1)

Bangkok
(1)

Croydon (2),
Birmingham
(1), Cambridge
(1), London
(1), Sheffield
(1)

LA (2), San
Francisco (2),
Boston (1),
Clearwater (1),
Chicago (1),
Cleveland (1),
Denver (1),
Minneapolis
(1), NYC (1),
Omaha (1),
Overland Park
(1), Phoenix
(1), Seattle (1),
Washington
DC (1)

real estate investment, coworking, and engineering,
expressed interest in participating. In total, 43 build-
ings were recruited; this analysis includes 42 buildings
since one building in the US was excluded because
the sensor package installed did not include a PM2.5

sensor. Table 1 shows details on the participation
levels per country.

In each building, recruitment was conducted on
a rolling basis until the building recruitment tar-
get of ten participants was met. The research team
tried to ensure that participants within a building
were balanced in terms of age and sex. Participant

eligibility criteria included being between 18 and
65 years of age, speaking one of the languages in the
study (English, Chinese, or Spanish), having a smart-
phone compatible with the study’s research app, hav-
ing a full-time position at the company, have a per-
manent workstation in the office and working there
for at least 3 days a week, not being colorblind, and
not being a current smoker. The analysis was lim-
ited to participants with two or more tests to elimin-
ate any ‘first test’ effects where participants were get-
ting familiar with the app and test format. Limiting
the analysis to those with two or more tests allows
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Figure 1. Flowchart of study inclusion criteria.

us to consider the first test as training and reduce a
potential confounding effect of test learning with the
exposure (Goldberg et al 2015). Figure 1 shows the
number of participants that met the eligibility cri-
teria for this analysis. Our study protocols were Gen-
eral Data Protection Regulation (GDPR)-compliant
and were reviewed and approved by the Institutional
Review Board at the Harvard T.H. Chan School of
Public Health.

2.3. Air quality assessment
Real-time, commercial-grade environmental sensors
were installed at or near the participants’ work-
stations. The installation took place by one mem-
ber of the research team or by a point of contact
at the participating building with remote assistance
from the research team. All sensors were installed
away from heat sources, drafts, direct solar irradi-
ation, and at the approximate breathing zone height
of a seated individual (0.8–1.5 m). Each building
received the same type of sensor package for the
participants. However, due to differences in con-
nectivity and network security requirements that

varied by building, a total of six different sensor
packages were used across the buildings included in
this analysis (table 2). This analysis only includes
buildings with sensor packages measuring PM2.5,
CO2, temperature, and relative humidity, exclud-
ing one building in the USA with a sensor pack-
age without a PM2.5 sensor. All sensor packages had
to be equipped with a pre-calibrated, laser-based
light scattering particle sensing unit for PM2.5 meas-
urements and a non-dispersive infrared CO2 sensor
with an automatic background calibration algorithm
and had to send data to a cloud database every
10 min.

Pre-installation quality assurance and quality
control (QA/QC) procedures included a visual com-
parison of real-time data by collocating at least
one unit per brand of sensor package next to
recently calibrated reference instruments (for PM2.5

sensors: TSI DustTrak, TSI Instruments, USA; for
CO2 sensors: QTrak 7575; TSI Instruments, USA).
Post-data collection QA/QC included visual inspec-
tion of time-series data. Due to reported limitations
of several sensor units at higher concentrations,
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Table 2. Summary of environmental sensor packages and hourly measurements associated with participant responses to cognitive tests
by country.

Variable

All

countries China India Mexico Thailand UK USA

Sensor

package

types

Six sensor

package types

Tsinghua

IBEM,

Harvard

Healthy

Buildings

Harvard

Healthy

Buildings/

Academia

Sinica, Awair

Omni

Harvard

Healthy

Buildings,

Awair Omni

Obotrons Harvard

Healthy

Buildings,

Awair Omni

Harvard

Healthy

Buildings,

Awair Omni,

ChemiSense

CS-001,

Tongdy

MSD-16

Environmental

factor

Geometric

mean (IQR)

PM2.5

(µg m−3)

5 16.6 14.2 9.9 9.7 1.8 2.9

(0.2–9.0) (6.3–29.7) (8.5–20.0) (6.5–25.0) (0.0–21.0) (0.0–2.0) (0.2–6.0)

CO2 (ppm) 723.1 552 951.4 781.2 715 803.1 638.6

(580.0–895.0) (489.0–663.4) (723.0–1124.0) (427.0–1289.0) (609.0–836.0) (669.0–870.0) (543.0–730.0)

Temperature

(◦C)

24.6 26.1 25.7 25.9 27.4 24.9 23.6

(23.6–26.1) (24.9–23.2) (24.7–26.6) (24.6–28.15) (27.1–28.2) (24.3–26.3) (22.7–24.7)

Relative

humidity (%)

40.6 54.9 44.6 66.7 49.2 36.6 37.6

(32.3–48.2) (42.0–76.9) (40.0–51.8) (43.1–79.6) (45.7–50.5) (29.0–41.4) (28.1–47.2)

environmental data within the 99th percentile for
PM2.5 (<80 µg m−3) and within the 97.5th percentile
for CO2 (<2500 ppm)were considered for this ana-
lysis (Demanega et al 2021). Values below 0 were cen-
sored for PM2.5 and below 400 ppm for CO2 data.

2.4. Cognitive function assessment
Two types of self-administered cognitive tests were
sent to participants via the study mobile app: (a) the
Stroop color-word test evaluating selective attention
and inhibitory control, and (b) a two-digit, visual
addition–subtraction (ADD) test evaluating cognit-
ive speed and workingmemory. These tests have been
used in previous assessments of cognitive function
due to their sensitivity to indoor environmental qual-
ity parameters (Saenen et al 2016, Cedeño Laurent
et al 2018). Each Stroop test consisted of 20 trials
of congruent, incongruent, and neutral word-color
stimuli, shown above four touch button icons with
the color choices of the words shown (i.e. blue, red,
green, and yellow). Participants were instructed to
respond as fast as possible to the button icon of the
displayed color, not the written color word. ADD
test consisted of ten trials of two-digit addition and
subtraction problems. Test trials were randomized in
order and content while keeping the same ratio of
congruent-to-incongruent trials for the Stroop and
additions-to-subtractions for the ADD to standardize
difficulty between assessments.

Each cognitive test type was prompted accord-
ing to a set of prescheduled times or based on a pre-
defined set of environmental conditions detected by
the environmental sensor to ensure variability in the
exposure conditions observed. Two environmental

target levels were evaluated per environmental expos-
ure of interest: for PM2.5, the ‘low’ and ‘high’ tar-
gets corresponded to indoor concentrations of below
50% (<6 µg m−3) and above 100% (>12 µg m−3)
of the US National Ambient Air Quality Standard
(NAAQS). For CO2, the ‘low’ and ‘high’ targets cor-
responded to <600 ppm and >950 ppm, respectively.
Significant differences in cognitive function between
these two levels have been previously found (Allen
et al 2016). In total, each cognitive test type was
prompted up to 36 times during the 12 month study
period. However, the total number of tests promp-
ted to each participant varied depending on how
often the target environmental conditions were met.
Stroop testmetrics included response time, inhibitory
response time (i.e. the difference in response times
between congruent and incongruent trial times),
and throughput (number of correct responses per
minute). ADD test metrics included response time
and throughput (number of correct responses per
minute). For both tests, we censored individual tri-
als with response times three standard deviations
from the global mean, as done in previous studies
using digital versions of cognitive tests (Linnman et al
2006). Table S1 shows a summary of the participa-
tion levels per test and summary cognitive testmetrics
(available online at stacks.iop.org/ERL/16/094047/
mmedia).

2.5. Statistical methods
Generalized additive mixed models were used to
quantify the individual effects of PM2.5 and CO2 on
each of the five cognitive test metrics of interest.
The CO2 term combines the direct effect of CO2
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and the indirect effect of ventilation rate, as vent-
ilation rate and CO2 concentrations are highly cor-
related. Participant ID and building ID were treated
as nested random effects to account for the unex-
plained population heterogeneity and expected cor-
relation between measurements taken from the same
individual and individuals within the same build-
ing. Cognitive test metrics were time-matched to
the corresponding mean hourly values of PM2.5,
CO2, and temperature measured by the respondents’
sensor. Whenever an environmental measurement
was missing, the value was imputed from the same-
hour average of other sensors near the respondent’s
workstation. The models controlled for temperature
(included in the model as a natural spline term with
three degrees of freedom) and included the number of
the assessment to account for learning effects. Adjus-
ted models included hour of the day and month of
the year as natural splines with five degrees of free-
dom to control circadian and seasonal effects. The
adjusted models also controlled for personal charac-
teristics (i.e. age, gender, educational level, and job
category) and building characteristics (i.e. number of
people in the room and workstation type). We evalu-
ated the non-linear effects of PM2.5 and CO2 on cog-
nitive test metrics using penalized splines with three
degrees of freedom in the model. All cognitive test
metrics were log-transformed tomeet the assumption
of normality. The obtained effect estimates repres-
ent the percent change in the geometric mean of the
models’ outcome variables from a one-unit change
in the explanatory variables. Due to the stratification
between participating buildings according to their
indoor PM2.5 levels, we did a sensitivity analysis to
separately evaluate the effects of PM2.5 on cognitive
function under low and high PM2.5 levels. We refit-
ted the adjusted model using a piecewise regression
with a breakpoint at 12 µg m−3, the US NAAQS
for average annual concentration for each cognitive
test outcome.We performed diagnostics of the mixed
models, including an assessment of the intra-class
correlations (ICC) of the random effects to under-
stand the degree of clustering at the building and indi-
vidual level and a comparison of the marginal and
condition R-squared values to assess the degree of
explained variance from the fixed and the combined
fixed and random effects, respectively. All model res-
ults show normally distributed and homoscedastic
residuals. We set a threshold for statistical signific-
ance at p < 0.05 for the main analyses (two-tailed
tests). All statistical analyses were completed in R
(version 4.0.3).

3. Results

Table 1 summarizes the participant information at
the building level. In general, the study had balanced
participation by gender (Females = 58%), despite
some countries where females were overrepresented

(e.g. China and Thailand). Most of the participants
(92.3%) had a high educational level, either with a
4 year college degree or graduate education. Table 2
provides summary statistics of the indoor environ-
mental data. Between countries, we found more sim-
ilarities in the levels of CO2 than PM2.5. There was
little variance in exposure (i.e. UK) and no overlap
between the countries’ IQR in some cases. Regard-
ing temperature and relative humidity, the values are
largely within previously observed values in indoor
environmental quality investigations of office build-
ings (Apte et al 2000, MacNaughton et al 2017).

Five cognitive performance metrics of office
workers were significantly associated with real-time
indoor concentrations of PM2.5 and CO2 (figure 2).
For Stroop, response time was significantly associated
with CO2 and PM2.5 concentrations. An interquartile
(IQR) increase in CO2 (IQR = 315 ppm) was associ-
ated with a 1.92% (95% CI: 1.39, 2.46) and a 0.85%
(95% CI: 0.32, 1.39) increase in response time for
the unadjusted and adjusted Stroop models, respect-
ively. For PM2.5, an IQR increase (IQR= 8.8 µgm−3)
was associated with an increase of 0.78% (95% CI:
0.39, 1.17) and 0.82% (95% CI: 0.42, 1.21) in the
unadjusted and adjusted models of Stroop response
time. The interference effect, measured as the differ-
ence between congruent and incongruent response
times, was associated with both air quality para-
meters. For each IQR increase in CO2 and PM2.5,
the adjusted model estimates showed a 7.88% (95%
CI: 2.08, 13.86) and a 6.18% (95% CI: 2.08, 10.3)
increase in interference time, respectively. Regarding
Stroop throughput, an IQR increase in CO2 was asso-
ciated with a 1.32% (95% CI: −2.3, −0.38) decrease
in the adjusted model; an IQR increase in PM2.5

had a decrease of 0.7% (95% CI: −1.38, −0.01) in
Stroop throughput. When evaluating non-linearity
in the association between exposure and cognitive
performance metrics, we found a significant non-
linear association between CO2 and Stroop response
time and Stroop throughput (figure 3). We observed
a linear association between 400 and 1200 ppm.
The association is not well-defined after 1200 ppm
due to the low number of measurements collected
above that concentration (CO2 95th percentile =
1363.0 ppm).

For the ADD test, increases in CO2, but not
in PM2.5, were significantly associated with slower
response times. For an IQR increase in PM2.5, there
was a 0.66% (95% CI: −0.16, 1.49) non-significant
increase in the adjusted model ADD response time.
For each IQR increase in CO2, there was a 1.13%
(95% CI: 0.18, 2.11) increase in the adjusted ADD
response time. For ADD throughput, an IQR increase
in PM2.5 was significantly associated with lower ADD
throughput (−1.51%, 95% CI: −2.65, −0.37); an
IQR increase in CO2 resulted in a non-significant
decrease 0.72% decrease in ADD throughput (95%
CI:−2.11, 0.63).
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Figure 3. Association between log-transformed Stroop response time and Stroop throughput and CO2 exposure using natural
splines with three degrees of freedom. Grey shading represented the 95% confidence interval. Dashed lines represent the CO2

quartiles (Q1= 25%, Q2= 50%, Q3= 75%). Adjusted covariates include temperature, age, gender, educational level, job
category, workspace type, occupants in the respondents’ room, hour, and month.

Table 3. Associations between log-transformed Stroop and ADD response times and PM2.5 using a piecewise linear regression with a
breakpoint at the NAAQS PM2.5 primary annual average standard with a level of 12.0 µg m−3. Results show the percent change in the
geometric mean of each test outcome for an IQR increase in PM2.5 (IQR= 8.8 µg m−3). (∗=p < 0.05; ∗∗=p < 0.01; ∗∗∗=p < 0.001).

Stroop test ADD test

% change per IQR increase (95% CI) % change per IQR increase (95% CI)

PM2.5 level Response time Interference time Throughput Response time Throughput

PM2.5 < 12 µg m−3 0 3.88 −0.1 0.59 −0.97
(−1.88, 0.36) (−9.77, 16.08) (−2.14, 1.94) (−2.85, 4.04) (−3.86, 2.00)

PM2.5 ⩾ 12 µg m−3 0.73 5.76 −0.77 0.9 −1.5
(0.33, 1.13)∗∗∗ (1.89, 11.20)∗∗ (−1.47,−0.08)∗ (−0.15, 1.95) (−2.59,−0.33)∗

Table 4. Random effects and model diagnostics from adjusted hierarchical general additive models for continuous Stroop and ADD test
performance metrics.

Stroop models ADD models

Response time Interference time Throughput Response time Throughput

Random effects (standard deviation)
Intercept 0.14 0.22 0.13 0.21 0.19
Participant level
Intercept 0.09 0.001 0.07 0.12 0.11
Building level

Intraclass correlation coefficient (%)
Participant level 0.17 0.04 0.46 0.21 0.46
Building level 0.07 0 0.12 0.07 0.15

Marginal R-squared 0.16 0.04 0.35 0.03 0.07
Conditional R-squared 0.4 0.08 0.75 0.3 0.64

Table 3 reports the stratified associations between
low (<12 µg m−3) and high (⩾12 µg m−3) PM2.5

levels and Stroop and ADD test performance. At
PM2.5 levels equal to or above 12 µg m−3, an increase
in PM2.5 concentrations was significantly associated
with lower performance on four out of five cognitive
test outcomes. Overall, the effects at low PM2.5 levels
were similar directionally and magnitude to those

at high concentrations, although none of the associ-
ations were statistically significant.

The standard deviation, intraclass correlation
of the multi-level random effects, and marginal
and conditional R-squared values from the five
main adjusted models are presented in table 4.
The between-participant variance is higher than the
between-building variance in all models. Also, the
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ICC at the participant level is consistently higher than
at the building level, suggesting that the clustering
between participants accounts for a larger propor-
tion of the variance than the between-building clus-
tering. The fixed effects explained a larger proportion
of the outcome variability in the Stroop test than in
theADD test. The random-effects hadmore explanat-
ory power for all models than the fixed effects, which
is supported by the higher variability observed in the
between-participants random intercept.

4. Discussion and conclusion

This 1 year longitudinal study investigated the acute
effects of low-level indoor PM2.5 and CO2 exposures
on the cognitive function of 302 office workers in
six countries around the world. We found significant
associations of selective attention (Stroop) and pro-
cessing speed (ADD) with exposure to these pollut-
ants indoors, at concentrations commonly observed
indoors.

PM2.5 levels indoors result from a combination of
indoor and outdoor sources. Indoor sources of PM2.5

include resuspension of settled dust, indoor smoking,
cooking, and secondary generation from cleaning
products; however, many indoor sources are less pre-
valent in office buildings than other building types
(Patel et al 2020). PM2.5 of outdoor origin also pen-
etrates indoors depending on several building-related
factors, such as ventilation, infiltration, and filtration.
In cities and countries with high levels of outdoor
PM2.5, levels indoors often exceed health-based lim-
its (Cohen et al 2017, Song et al 2017, Balakrishnan
et al 2019). In our study, China, India, Thailand, and
Mexico, the annual outdoor PM2.5 mean concentra-
tions exceed the NAAQS annual mean standard of
12 µg m−3 and WHO air quality guideline value of
10 µg m−3 (Shaddick et al 2018). For comparison, in
our study, the median of hourly indoor PM2.5 con-
centrations during work hours in India and China
were 8.0 and 18.0 µg m−3, respectively. In contrast,
the median of hourly concentrations during work
hours in the US and the UK was 1.7 and 1.0 µg m−3,
respectively.

We found that higher indoor PM2.5 levels were
significantly associated with decreased performance
in Stroop response time, interference time, and
throughput, and lower ADD throughput. Our res-
ults are consistent with previously published work.
In an experimental study, Shehab and Pope found
an association between selective attention from the
exposure to candle-generated indoor PM and expos-
ure to traffic pollution (Shehab and Pope 2019). The
authors reported no significant effects on the Stroop
color-word test, but the study may have been under-
powered given their small sample size (n = 33). A
study in Belgian classrooms investigating the acute

effects of indoor PM2.5 on cognitive function found a
3% increase in Stroop response times associated with
an increase in 8 µg m−3 PM2.5 (Saenen et al 2016).
For the same increase in PM2.5 concentration, we
found an increase of 0.8% in Stroop response times.
Observing these effects in working-age adults was
novel, as research often focuses on children and older
adults. It is often hypothesized that these populations
are more susceptible to the neurocognitive effects of
air pollution due to their developing or decliningCNS
functions. The highermagnitude of the association in
younger children compared to adults might support
such an argument.

We found that higher CO2 levels in office build-
ings were associated with decreased performance
in all Stroop test metrics, and increased ADD
response times. Our findings are consistent with
and expand upon other studies of the effects of
CO2 and ventilation on cognitive function. Several
studies have examined the impacts of ventilation
on cognitive performance, using CO2 as a proxy
(Haverinen-Shaughnessy et al 2015, Maddalena et al
2015, Zhang et al 2017), as we did in our study.
Haverinen-Shaughnessy and Shaughnessy found sig-
nificant improvement in arithmetic standardized test
scores associated with higher ventilation rates among
elementary school students (Haverinen-Shaughnessy
et al 2015). Others have investigated the direct effects
of CO2, independent of the ventilation rate (Allen
et al 2016, 2019). Allen et al found that short-term
exposures to ventilation rates at 20 cubic feet per
minute/person and CO2 above 900 ppm were associ-
ated with significantly lower test scores using the stra-
tegic management simulation tool (Allen et al 2016).
Satish et al also found effects of CO2, independent of
ventilation, when concentrations exceeded 1000 and
2500 ppm relative to a 600 ppm baseline. The effects
of PM2.5 on ADD response time were not statistically
significant, suggesting that the exposure had a larger
effect on test accuracy than on test speed. Conversely,
the association between CO2 and ADD throughput
was not significant. A plausible explanation for these
results is that these two environmental exposures have
differential effects on attention and processing speed
versus workingmemory, which could also explain the
larger effects we report of CO2 on Stroop interference
time.

Due to the limited range of PM2.5 exposures in the
UK and the USA relative to the rest of the countries in
the study, we performed a sensitivity analysis evaluat-
ing the effects of PM2.5 below and above the NAAQS
primary annual mean standard of 12 µg m−3. We
found that the associations between indoor PM2.5 and
lower cognitive performance were stronger in mag-
nitude and significance at concentrations above the
NAAQS standard annual mean. This result supports
the existence of acute effects of PM2.5 exposures
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on cognitive function. Nevertheless, it is difficult to
determine whether the effects at lower levels are non-
existent or if other country-level covariates associated
with cognitive test performance (e.g. quality of educa-
tional systems) could have subdued the effects found
at higher PM2.5 levels. We also performed a stratified
analysis by time of day, gender, job category, and edu-
cational level (results not shown). Overall, the find-
ings are robust across the different strata,maintaining
the magnitude and directionality of the associations
of PM2.5 and CO2 with the cognitive tests. However,
some of the strata have a limited number of obser-
vations, leading to more uncertain effect estimates
within strata.

The model diagnostics show that environmental
factors explain a significant portion of the vari-
ability in cognitive performance, especially on the
Stroop test. The fixed effects on the Stroop test
account for 40%–50% of the variance explained by
the model. While the variance in cognitive perform-
ance between individuals was greater than differences
between buildings, these results show that the built
environment influences acute cognitive performance
of similar magnitude to the aggregate interpersonal
differences related to education, sleep, diet, and other
factors.

Our study has several limitations. First, it did not
measure any exposures outside work. While some
of the observed effects may be lagging a home or
commute exposure, we consider that the close tem-
poral relationship between exposure and outcome in
our study makes this possibility less likely. Second,
the random effects analysis shows that between-
participant variation is very large compared to the
effect size observed from the exposures of interest.
Despite participant-level covariates associated with
the outcome (e.g. age, gender, educational level), the
model has a relatively low fit, particularly in the
ADD test with larger confidence intervals (table 3)
and lower R-squared values (table 4). Third, there
are known limitations to the quality of real-time,
commercial-grade environmental sensors. Concerns
about the instrument quality have been expressed
elsewhere (Clements et al 2017). However, since sev-
eral sensor packages share the same components
(same optical particle counter model), we consider
that errors might be similarly distributed in differ-
ent study locations. Moreover, these commercial-
grade packages are improving rapidly (Demanega
et al 2021).

Our study advances a growing body of literat-
ure on the effects of air pollution on cognitive func-
tion in several ways. First, the combination of real-
time indoor air quality sensors and a mobile research
app to administer in-situ cognitive tests allowed us
to study exposure and outcome at a high spatiotem-
poral resolution. Second, compared to experimental

approaches with simulated exposures, the observa-
tional study design relied on the natural variability of
the exposures of interest across countries represent-
ing nearly half of the world’s population, adding to
the exposures’ validity (table 2).

We consider that this study adds to the evid-
ence of the acute impacts on cognitive function
associated with poor indoor air quality. Benefits
on cognitive function from reducing exposures to
PM2.5 and CO2 indoors, either by filtration or higher
ventilation rates, may positively impact productiv-
ity, educational attainment, safety, and many other
activities where cognitive performance is important.
This study also contributes to the body of literat-
ure indicating that building performance is associated
with cognitive performance. In addition to the well-
established health benefits from lower PM2.5 levels
(e.g. reductions in cardiovascular disease, asthma
attacks, premature mortality), and from higher vent-
ilation rates (e.g. reduced infectious disease trans-
mission, fewer sick-building symptoms, and reduced
absenteeism), our findings provide further incentive
to improve air quality in indoor spaces. Higher vent-
ilation rates and enhanced filtration that exceed cur-
rent minimum targets are important public health
strategies.
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